How to define the areas, layers and stacks of FPC?
Use tables to define cascading stacks
The most important document provided to the manufacturer is undoubtedly the stacked stack.
In order to make a rigid-flex board, it is necessary to provide different stacks in different fields and clearly identify them.
A simple method is to copy the outline of the board on the mechanical layer, and mark the area where different stacks exist, and put the corresponding stack structure table aside.
Next, we need a 2D space to define where is bent or folded, where components and other important objects can cross the boundary between rigidity and flexibility.
Convey PCB design intent
We all know that a picture is worth a thousand words.
If a 3D image showing flexible and rigid areas can be generated, this will help manufacturers understand our intentions more clearly.
Many people now use MCAD software to realize this view, and they import the STEP file of the PCB design into the MCAD software.
Another advantage is that it can help us check the mutual interference between the flexible board and the flexible board and between the flexible board and the rigid board, and avoid huge mistakes.
Component placement
Rigid-flex board means that components can be placed on the middle layer, not just the top and bottom layers.
This is a bit tricky in PCB design software, because usually components must be placed on the top and bottom layers.
We need the ability to place components on the middle layer. Fortunately, Altium Designer can place pads on any layer, so this is possible.
In addition, the silk screen can be printed on the flexible circuit. This is not a problem now, because the cover layer material can bond well with the screen printing ink. The key is to choose enough ink colors that penetrate the cover material and have a strong contrast. The clarity of the silk screen will be affected a bit, because it has to pass through the cover film and the fine spacing between them.
emphasize again! ! These need to be negotiated with the manufacturer to find a feasible and economical approach.
Remark 1: If we plan a certain area on the PCB board for connecting the flexible board, and place components on these areas, then this is a reasonable area for placing embedded components.
We need to generate a set of very clear files, showing the position of the incision and the layered structure. This will result in limitations due to manufacturing methods, such as re-drilling or multiple pressings.
Therefore, it is very important to accurately convey your intentions and minimize individual openings.
! ! It is best to avoid crossing openings on both sides of the board.
Remark 2: Define FLEX incision
IPC recommends a radius greater than 1.5mm (about 60 mils), which can greatly reduce the possibility of tearing the flexible circuit at the corner.
For the same reason, the two ends of the groove and slit in the flexible circuit should be placed with a hole with a diameter of 3mm (⅛) or larger to prevent tearing.
The grooves, slits and inner corners should have tear prevention openings or there should be an arc with a minimum radius of 1.5mm between the tangent lines.
In order to produce reliable rigid-flex board products, manufacturers and end users of flexible circuits need to consider a lot, including design considerations for copper patterns.
Special attention to flexible circuit wiring
Problems such as layer stack design, device layout, and cutting are obvious, but there are many material weaknesses in flexible circuits.
From adhesives with relatively high z-axis expansion coefficients, to low-viscosity PI substrate copper coatings, to copper hardening and fatigue. The do's and don'ts stated below will focus on adding:
Maintain the flexibility of the flexible board
It is obvious that the flexibility of the flexible circuit must be determined in advance according to the needs, but it must be emphasized again.
If the flexible circuit part is only intended to be folded during the assembly process, and then installed in a fixed position, for example, installed in a handheld ultrasound device, then we are choosing the number of signal layers and the type of copper (RA or ED), There will be a lot of freedom.
On the other hand, if the flexible circuit part is to be constantly moved, bent or rotated, then the number of layers should be reduced, and no glue material should be selected.
Don't bend around the corner
Usually we recommend to keep the copper traces of the flexible circuit bent in the vertical direction.
But sometimes it is not possible, so please minimize the bending amplitude and frequency, or use conical bending according to the mechanical design requirements.
Use arc routing
As shown in Figure 1 above, it is best to avoid using abrupt right-angle or rigid 45° angle routing, but use arc-angle routing mode. This can reduce the stress of the copper skin during the bending process.
Don't suddenly change the width of the trace
When the trace is connected to the pad, especially the flexible circuit terminal arranged (as shown in the figure below), it will form a weak focus point, and the copper skin will easily age over time.
Use polygon
Sometimes, it is necessary to place a power supply or ground plane on a flexible board.
If you don't mind the significant reduction in flexibility and the possibility of wrinkling the copper skin, you can choose to use solid copper.
Generally speaking, in order to maintain a high degree of flexibility, it is best to use shaded polygonal copper.
Provide reinforcement for pads
Due to the use of a low-viscosity adhesive (compared to FR-4), the copper on the flexible circuit is more easily detached from the polyimide substrate. Therefore, it is particularly important to provide reinforcement to the exposed copper skin.
Maintain double-sided flexibility
For dynamic double-sided flexible circuits, try to avoid placing traces in the same direction, but stagger them so that the copper traces are evenly distributed.
在数字时代,LCD屏幕无处不在,从手机和平板电脑到电视和显示器。尽管LCD技术已经相当成熟,提供了成本效益高且性能稳定的显示解决方案,但在其生命周期中,用户可能会遇到各种显示问题。本文深入探讨LCD显示屏的常见不良现象,分析其原因,并提供针对性的解决方案,帮助用户和技术人员更好地理解和维护他们的设备。
TFT-LCD屏可视为两片玻璃基板中间夹着一层液晶,上层的玻璃基板是与彩色滤光片(ColorFilter)、而下层的玻璃则有晶体管镶嵌于上。当电流通过晶体管产生电场变化,造成液晶分子偏转,藉以改变光线的偏极性,再利用偏光片决定像素(Pixel)的明暗状态。此外,上层玻璃因与彩色滤光片贴合,形成每个像素(Pixel)各包含红蓝绿三颜色,这些发出红蓝绿色彩的像素便构成了皮肤上的图像画面。
日本千叶大学开发出一项革命性 OLED 测量技术,通过精准检测器件内部电位分布,优化电位状态,显著提升发光效率与寿命。该技术借助 ESFG 光谱手段,实时监测电荷移动状态,相关成果发表于英国学术期刊。LCD 生产厂家华之晶对该技术突破表示关注,作为成立于2008年、位于东莞松山湖的高新技术企业,其产品涵盖 TFT 液晶屏、OLED 屏等,应用于工业、医疗、智慧家居领域,千叶大学的研究成果或为华之晶创新发展提供新动力,助力其在显示技术领域拓展与升级。
本周,我们荣幸地在东莞的液晶显示器制造工厂接待了一位尊贵的国际客户。在我们团队的带领下,客户参观了诸如全自动 COG 焊接线、背光组装区、全贴合车间以及最终产品老化测试区等关键生产区域。他们对我们强大的生产能力、严格的质量控制以及工程专业技能给予了高度评价。此次访问增进了双方的信任,并为未来的合作奠定了基础。
在定制 LCD 点阵显示屏时,需在 COB 和 COG 封装技术间抉择。COB 成本低、集成度高,适合小尺寸、成本敏感型产品如智能手表;COG 散热、佳性能优,适用于中大型、高分辨率显示屏如车载仪表盘。本文全面对比两者,助您依显示屏尺寸、成本、性能及应用场景做出明智选择,提升显示性能、降低成本,优化用户体验。
ILI9881C是由ILI Technology Corp.开发的一款高性能的a-Si TFT LCD单芯片驱动器。这款驱动器以其卓越的显示性能和灵活的配置选项,满足了现代显示设备对于高分辨率和高色彩精度的需求。本文将详细介绍ILI9881C的支持分辨率,支持接口及供电电压。